
Advances In Software
Technology Since 1992*

John C. Knight
Department of Computer Science

University of Virginia

August, 2008

*Funded in part by NASA

and a modest proposal for dealing with them...

2 University of VirginiaDepartment of Computer Science

About The TitleAbout The Title
Why “Advances In Software Technology”?
Because

There have been many

These advances are important to aerospace

Why 1992? Because:
That was when DO-178B was published, 16 years ago
Standard reflects the technology of 20 years ago

3 University of VirginiaDepartment of Computer Science

About The TitleAbout The Title
Why now? Because:

Software engineering landscape continues to change
A lot of effort is being expended on DO-178C

Term “software engineering” was coined in 1968

40 years ago
DO-178B around roughly half that time

Remember, these are strictly my views

4 University of VirginiaDepartment of Computer Science

About MeAbout Me
Why qualifies me to speak about this?

Professor of Computer Science at the University of Virginia
Teaching & research on software engr. for safety critical systems

Editor in Chief, IEEE Transactions on Sw. Engr, 2002-2005

General chair of:
2000 International Symposium on Foundations of Sw Engr (FSE)

2007 International Conference on Software Engineering (ICSE)

IEEE CS Harlan Mills Award, 2006

ACM SIGSOFT Distinguished Service Award, 2008

Please Forgive My Saying ThisPlease Forgive My Saying This

5 University of VirginiaDepartment of Computer Science

Software TechnologySoftware Technology

6 University of VirginiaDepartment of Computer Science

What Affects Software Technology?What Affects Software Technology?

Going to look at a few sample topics

Software
Technology
Software

Technology

ResearchResearch

ExperienceExperience

HardwareHardware

ApplicationsApplications

EnvironmentEnvironment

7 University of VirginiaDepartment of Computer Science

Please Note...Please Note...

Talking about technology that has been
developed

NOT
Technology that has necessarily been

widely adopted

8 University of VirginiaDepartment of Computer Science

What Is The Major Challenge?What Is The Major Challenge?

1992:

Implementation defects dominated

2008:

Requirements defects dominate

--- This is a huge difference ---

9 University of VirginiaDepartment of Computer Science

Why Has This Occurred?Why Has This Occurred?

Better implementation techniques

Larger and more complex applications

Don’t worry, the gene pool has not changed.

10 University of VirginiaDepartment of Computer Science

Implementation Technologies

11 University of VirginiaDepartment of Computer Science

Implementation TechnologiesImplementation Technologies
Practical formal specification languages, tools & techniques
Effective software reuse
Model-based development
Better high-level languages
Practical formal verification
Model checking
Powerful static analysis
Better inspections and reviews
Better software assessment techniques
Managed development processes
High quality COTS components

12 University of VirginiaDepartment of Computer Science

Formal SpecificationFormal Specification
1992:

Few formal languages, mostly laboratory curiosities
Natural language dominated

2008:
Many formal languages

Z, VDM, RSML, Statecharts, PVS
And some narrow-domain, semi-formal languages:

SCADE, Simulink
Permit analysis and much better communication
Demonstrated value
Substantial tool support

Many reasons to use them, especially in safety-critical
systems

13 University of VirginiaDepartment of Computer Science

Formal SpecificationFormal Specification

Formal
Specification

Syntax Checking
Type Checking
Property Proofs

Establish useful properties of the
specification

Formal
specification uses a

formal language
with mathematical

semantics

Analysis is possible
because of

mathematical
semantics

14 University of VirginiaDepartment of Computer Science

RefinementRefinement

Formal
Specification

Design & Code
Refinement/Proof

Code

Design & Code
Refinement/Proof

Design & Code
Refinement/Proof

Correctness by
construction

Create software by a
series of refinements

Prove that each
refinement is correct

15 University of VirginiaDepartment of Computer Science

Software ReuseSoftware Reuse
Three approaches to reuse:

Very high level languages
Application generators
Component libraries and canonical designs

1987:
Software Productivity Consortium
Reuse was viewed as a panacea
Still an embryonic technology in 1992

2008:
Mature technology
Reuse is being applied to all software artifacts
Important technology for cost control and quality improvement

16 University of VirginiaDepartment of Computer Science

Programming LanguagesProgramming Languages
1992:

Ad hoc, procedural languages
FORTRAN, C, Pascal
Ada ‘83

2008:
Pascal derivatives:

Modula
SPARK Ada
Ada 2007

How different are they?

C derivatives:
C++
C#
Java

Designed For
Scientific ComputingDesigned For

Systems
Programming With
Limited Resources

Designed For
Teaching

Designed For
Embedded, Real-

time, Safety-Critical
Systems

17 University of VirginiaDepartment of Computer Science

Benefits Of Types & Static AnalysisBenefits Of Types & Static Analysis

Software
in C

Software
in Ada

Software
in SPARK Ada

Defects That Escape Development

÷ 10 ÷ 10

18 University of VirginiaDepartment of Computer Science

Model CheckingModel Checking

Model
Development

Property
Development

Check
Model

Manual model building
Manual property development
Automatic analysis

1992:
Only just invented

2008:
In common use

19 University of VirginiaDepartment of Computer Science

Model CheckingModel Checking
A model is:

A program in a modeling language
Describes some of the computation, typically:

Concurrency
Synchronization
Communication

A “model” of the concurrent part of the program

Desired temporal conditions are checked, e.g.:
This never happens
This happens at some point

Allows things like deadlock to be specified
Defined in a temporal logic

20 University of VirginiaDepartment of Computer Science

Implementation TechnologiesImplementation Technologies
Practical formal specification languages
Effective software reuse
Model-based development
Better high-level languages
Practical formal verification
Model checking
Powerful static analysis
Better inspections and reviews
Better software assessment techniques
Managed development processes
High quality COTS components

21 University of VirginiaDepartment of Computer Science

Requirements Technologies

22 University of VirginiaDepartment of Computer Science

Community ResponseCommunity Response
International Conf. on Requirements Engineering:

Started 1993
Requirements Engineering Journal (Springer):

Started 1996
Numerous web sites started:

See http://www.systemsguild.com/GuildSite/Guild/resources.html

Many tools created
See http://www.volere.co.uk/tools.htm

Many important techniques developed:
E.g., Use cases

http://www.volere.co.uk/tools.htm

23 University of VirginiaDepartment of Computer Science

Formal SpecificationFormal Specification
As noted earlier:

1992: laboratory curiosity (except for CICS)
2008: practical technology, fully supported

What change has this brought?
Analysis:

Syntax—we are all talking the same language
Types—we don’t mix apples and oranges
Properties—things like:

Input coverage completeness
Freedom from transitions to undesired states

Vastly better communication and understanding

24 University of VirginiaDepartment of Computer Science

Rapid PrototypingRapid Prototyping
Major practical advances since 1992
Attacks uncertainty in requirements
A prototype can be used to answer a wide range
of questions, e.g.:

Important aspects of functionality
Determination of performance adequacy
Whether systems are acceptable to users

Incomplete or defective requirements are not an
excuse
You can’t build if you don’t know what to build

25 University of VirginiaDepartment of Computer Science

Executable SpecificationsExecutable Specifications
Literally formal specifications that can be executed
1992:

Embryonic technology
Laboratory curiosity

2008:
Serious capabilities with serious tools
Examples in narrow domains:

SCADE, Simulink

Examples in broad domains:
NRL’s SCR system
Statecharts and Statemate

26 University of VirginiaDepartment of Computer Science

Computer System Computer System
ArchitectureArchitecture

27 University of VirginiaDepartment of Computer Science

Distributed SystemsDistributed Systems
1992:

A few specialized systems
1553 bus dominated

2008:
Local and wide-area networks, including real-time buses
Multiple advantages from both
Many technical issues solved

But
Some solutions absolutely require proof, e.g.:

Distributed agreement
Clock synchronization

28 University of VirginiaDepartment of Computer Science

Software ArchitectureSoftware Architecture
1992:

Term had not been coined
2008:

Major field of practice and study
Powerful concepts and associated results
Standard patterns with important properties
Middleware
Objects at the system level:

.Net
Corba
Etc.

29 University of VirginiaDepartment of Computer Science

Hardware TechnologyHardware Technology

30 University of VirginiaDepartment of Computer Science

Integration LevelsIntegration Levels
1992:

Intel 80486
1.2M transistors 50 MHz clock

2008:
Intel Core 2 Extreme QX6700
582M transistors 2,930 MHz clock

DRAM/SRAM memories ~100 times larger
Non-volatile CF memory Not available in 1992
Entire range of data communications equipment

31 University of VirginiaDepartment of Computer Science

Microprocessor ArchitectureMicroprocessor Architecture
Very large address spaces

Sophisticated virtual memory structures

On-chip large caches

Out-of-order execution

Sophisticated pipelines

Multi-threaded hardware

Multiple cores

And
Variety of architectures and instruction sets

32 University of VirginiaDepartment of Computer Science

Hardware DependabilityHardware Dependability
Fundamental characteristics of hardware failure
have changed

1992:
Degradation faults dominated

2008:
Design faults dominate

SEUs significant
Byzantine faults significant

33 University of VirginiaDepartment of Computer Science

Impact Of Hardware On SoftwareImpact Of Hardware On Software
Much more software:

Many more critical applications possible
Introduction of non-critical applications
Advent of data-intensive applications

Vastly more complex software:
Distributed systems
Highly concurrent systems

Software support for hardware:
Management of resources
Dealing with hardware faults
Unpredictable hardware performance, esp. timing

34 University of VirginiaDepartment of Computer Science

And Finally...And Finally...

35 University of VirginiaDepartment of Computer Science

SecuritySecurity
1992:

Security? What’s that?
2008:

Security:
Authentication, tamper-proofing
Confidentiality, integrity

Important for airborne and ground systems
Going to get a lot worse:

Data links from everywhere to everywhere
Mobile devices

Security is not an “add on”, it has to be built in

36 University of VirginiaDepartment of Computer Science

Oh No, One More Thing...Oh No, One More Thing...

37 University of VirginiaDepartment of Computer Science

Unmanned Air SystemsUnmanned Air Systems

An unmanned aircraft is
not just a manned

aircraft without a pilot.

38 University of VirginiaDepartment of Computer Science

A Modest ProposalA Modest Proposal

39 University of VirginiaDepartment of Computer Science

Enhancing DOEnhancing DO--178B?178B?

Technology
Development
Since 1992

Technology
Development
Since 1992

Supporting
Documentation

Supporting
Documentation

DO-178BDO-178B

?

40 University of VirginiaDepartment of Computer Science

ChallengesChallenges
Wide variety of systems:

Commercial transports
Unmanned air systems
Ground systems

Wide variety of technologies
Wide variety of assurance requirements
Backward compatibility with DO-178B
Switch in basic certification approach to rigorous argument
Addressing the NRC report:

“Software for Dependable Systems: Sufficient Evidence?”

41 University of VirginiaDepartment of Computer Science

This Is A Very Hard ProblemThis Is A Very Hard Problem
Can an enhanced standard deal with these challenges?

Some, but not all

Cannot get a quart into a pint pot

Any comprehensive solution faces the prospect of evolving
into a “Swiss Army Knife”

Trying to do so, puts tremendous pressure on DO-178C

So, I propose DO-1743

I have a bottle of wine for the first person
to figure out why it’s 1743 without a hint

42 University of VirginiaDepartment of Computer Science

DODO--17431743

Software Fitness
Goal Set1

Approved
Argument
Pattern1

Approved
Evidence

Component1

Approved
Argument
Pattern2

Approved
Evidence

Component2

Approved
Evidence

Component3

Approved
Evidence

Component4

DO178B
Evidence

Component

Approved
Argument
PatternM

DO178B
Argument

Pattern

Software Fitness
Goal SetN

Approved
Evidence

ComponentR

Comm. Trans.
Flight Control

System

Flight
Management

System

UAS
Autopilot

UAS
Ground Control

Station

UAS
Flight Control

System

Commercial
Transport
Autopilot

Software Fitness
Goal Set2

43 University of VirginiaDepartment of Computer Science

Advantages Of DOAdvantages Of DO--17431743
Can accommodate all advances in software technology

Includes DO-178B yet compliance will be for DO-1743

Provision for inclusion of DO-178C once it is complete

Removes pressure from DO-178C to be comprehensive

Provides a mechanism for FAA to require certain

combinations of technology for certain purposes

Applicant can choose technology and processes suitable

for the system the applicant is building

44 University of VirginiaDepartment of Computer Science

Advantages Of DOAdvantages Of DO--17431743
Incorporates the modern notion of safety cases

Addresses the issues raised in NRC Committee Report
Can be applied to ground systems immediately and without
modification

Can be applied to unmanned air systems immediately and
without modification

Alignment with:
British MoD Defence Standard 00-56

U.S. FDA planned replacement for 510K

45 University of VirginiaDepartment of Computer Science

ConclusionConclusion
The software world has changed dramatically
Arguably:

The challenges cannot be met fully by an enhanced
DO-178B
Many can be, so DO-178C will provide a lot of value
Comprehensive approach requires a new paradigm

New paradigm is carefully managed safety-case
structure
DO-1743 is a start at the necessary framework

46 University of VirginiaDepartment of Computer Science

ContactContact

E-mail address:
knight@cs.virginia.edu

For more information see:

http://www.cs.virginia.edu/knight/

http://dependability.cs.virginia.edu/

mailto:knight@cs.virginia.edu
http://www.cs.virginia.edu/knight/

	Advances In Software Technology Since 1992*
	About The Title
	About The Title
	About Me
	Software Technology
	What Affects Software Technology?
	Please Note...
	What Is The Major Challenge?
	Why Has This Occurred?
	Implementation Technologies
	Formal Specification
	Formal Specification
	Refinement
	Software Reuse
	Programming Languages
	Benefits Of Types & Static Analysis
	Model Checking
	Model Checking
	Implementation Technologies
	Community Response
	Formal Specification
	Rapid Prototyping
	Executable Specifications
	Computer System Architecture
	Distributed Systems
	Software Architecture
	Hardware Technology
	Integration Levels
	Microprocessor Architecture
	Hardware Dependability
	Impact Of Hardware On Software
	And Finally...
	Security
	Oh No, One More Thing...
	Unmanned Air Systems
	A Modest Proposal
	Enhancing DO-178B?
	Challenges
	This Is A Very Hard Problem
	DO-1743
	Advantages Of DO-1743
	Advantages Of DO-1743
	Conclusion
	Contact

